
F-INR: Functional Tensor Decomposition for Implicit Neural Representations

Supplementary Material

Table of Contents

A. Introduction 1

B. Tensor Decomposition Modes and Backends 3
B.1. Tensor Decomposition Modes 3

B.1.1. Canonical Polyadic (CP) 3
B.1.2. Tensor Train (TT) 3
B.1.3. Tucker (TU) 4

B.2. Backends 4
B.2.1. ReLU MLP with Positional Encoding 4
B.2.2. Tanh MLP 5
B.2.3. SIREN 5
B.2.4. FINER 5
B.2.5. WIRE 5
B.2.6. Factor Fields 5
B.2.7. Hash Encoding as Embedding 5

B.3. Model Implementations in tiny-cuda-nn . . . 6
B.4. Notes on SOTA Methods 6

B.4.1. CoordX 6
B.4.2. NeuRBF 6
B.4.3. Factor Fields 7
B.4.4. InstantNGP 7

C. Universal Approximation Theorem for Separable
Neural Functions 8

D. Image Representation Details 9
D.1. MLP Architectrue 9
D.2. Quantitative Results 9
D.3. Qualitative Results 9
D.4. Ablations: Single Image Super Resolution

and Denoising 9

E. Video Representation Extension 12
E.1. Model Architectures 12
E.2. Results . 12

F. Geometry Learning via Signed Distance Functions 15
F.1. Architecture and Training 15
F.2. Ablations 15
F.3. Qualiative Results 15

G. Neural Radiance Fields 23
G.1. Architecture 23
G.2. Quantitative Results 23
G.3. Qualitative Results 23

H. Navier-Stokes PDE Super Resolution 26
H.1. Architecture 26
H.2. Results . 26
H.3. Sparsity Ablation 27

I . Failure Modes at Low Rank 30

J. Practitioner Guide: Backend, Mode, Rank 32
J.1 . Investigating Task Constraints 32
J.2 . Backends: Recommend Task Defaults 32
J.3 . Modes: Recommendations 32
J.4 . Rank: Capacity Knob for Interactions 32
J.5 . Decide Mode & Rank 32
J.6 . PE/Encoder sensitivity (Practical Note) . . . 32
J.7 . Ready-To-Use Defaults 32

A. Introduction
This document provides comprehensive details, theoretical
proofs, and extended experimental results that support our
main paper, ”F-INR: A Functional Tensor Decomposition
Framework for Implicit Neural Representations.” Our goal
is to offer transparency into our methodology, reproducibil-
ity, and provide a deeper, more nuanced understanding of
the F-INR paradigm and its performance characteristics.
• Implementation and Architectural Details: We pro-

vide detailed descriptions of our experimental setups,
including specifics on the neural network architectures
used for each backbone (e.g., ReLU [29], SIREN [40],
WIRE [39]), our handling of Positional and Hash Encod-
ing. This section also includes a discussion on our use
of standard PyTorch [34] and jax [3] implementations
versus highly optimized libraries like tiny-cuda-nn, clari-
fying why certain methods were chosen for specific tasks.

• Theoretical Foundation: We provide a formal proof that
our functional tensor decomposition framework is a uni-
versal approximation. This establishes the theoretical
soundness of our approach and its capacity to represent
complex, high-dimensional functions.

• Complete Experimental Results: We present the full,
unabridged quantitative and qualitative results for all
tasks discussed in the main paper. This includes the com-
prehensive tables for image representation, and additional
video representation, across all tested combinations, de-
tailed metrics for Signed Distance Function (SDF) recon-
struction, results for radiance fields, and the complete
analysis of our physics-informed Navier-Stokes simula-
tion. Please be aware that some of the tables are pro-
vided as additional external HTML documents due to

1

their large scales, as they would not have fit within this
LATEX document.

• Ablation Studies: We include the full suite of abla-
tion studies that analyze the impact of each of F-INR’s
core components: the choice of backend, the decom-
position mode (CP, TT, Tucker), and the various tensor
rank. These studies offer critical insights into the speed-
accuracy trade-offs, noise resistance, and the interplay be-
tween different design choices (first attempts at a thumb-
rule) within our framework.
For organizational clarity, each major section of this doc-

ument begins on a new page to prevent tables and figures
from being awkwardly split. We believe this material pro-
vides the necessary detail to fully appreciate the robustness,
flexibility, and performance of the F-INR framework.

2

B. Tensor Decomposition Modes and Backends
Here, we provide more information on the tensor decompo-
sition modes and backends used for formulating F-INR.

B.1. Tensor Decomposition Modes
An INR problem (dimension ≥ 3) can be reformulated as
an equivalent F-INR-problem using three modes of func-
tional tensor decompositions. There are even more modes
like Higher-Order SVD, Tucker2, Hierarchical Tucker, Ten-
sor Ring, Block Tensor forms [19, 48, 53]. However, in
this study, we confine ourselves to the three most com-
mon and widely used modes: Canonic Polyadic, Tensor-
Train, and Tucker decomposition forms. We refer to works
like [19, 48] for comprehensive information about tensor
decompositions.

Let Φ ∈ RI1×I2×...×IN denote an N -mode tensor of or-
der N , where In represents the dimensionality along the
n-th mode. The objective of tensor decomposition is to ap-
proximate Φ by a structured decomposition that minimizes
the number of parameters while preserving the data’s essen-
tial features. Each decomposition represents Φ in terms of
factor matrices, vectors, or core tensors, enabling compact
and often interpretable representations. We use the symbol
≈ to indicate an approximation.

A classical INR is visualized in Figure 1. For simplicity,
we visualize three-dimensional INR of original dimensions
X × Y × Z and can be extended similarly to any arbitrary
dimension. To estimate the forward pass complexity, we
assume X = Y = Z = n the neural network is of m
features and l layers, and the n3 points are trained as a single
batch. Considering the complexity of the multiplication of
two layers of m features is m2, the complexity of a forward
pass for a classical INR (m features, l layers) is O(m2ln3)
[25].

Φ

X

Y

Z

Figure 1. Classical INR of shape X × Y × Z. A single neural
network predicts all the entries.

B.1.1. Canonical Polyadic (CP)
The Canonical Polyadic (CP) decomposition [15], also
known as PARAFAC or CANDECOMP, approximates a
tensor as a sum of rank-one tensors. Specifically, for an

φ1

Xφ2

φ3Z1 ... Zn

X1 ... Xn

Y1 ... Yn

FTD mode:CP

X x r

Y x r

Z x r

X x Y x Z

Φ

Figure 2. F-INR in CP mode for INR of shape X ×Y ×Z. Three
individual neural networks predict the factor matrix of rank r for
each corresponding dimension. The shape of the matrix/tensor is
provided below.

N -mode tensor Φ ∈ RI1×I2×...×IN , the CP decomposition
can be formulated as:

Φ ≈
R∑

r=1

ϕ(1)r ◦ ϕ(2)r ◦ . . . ◦ ϕ(N)
r , (1)

where ϕ(n)r ∈ RIn(n ∈ [1, N]) represents the factor vec-
tor associated with the n-th mode for component r, and R
is the rank of the decomposition. Here, ◦ denotes the outer
product, and the CP decomposition is a sum of R outer
products.

An F-INR in CP mode is visualized in Figure 2. For
simplicity, we visualize three-dimensional INR of original
dimensions X × Y × Z and can be extended similarly to
any arbitrary dimension.

In this case, the estimation of forward pass complex-
ity is done in two steps. First, the complexity of the for-
ward pass involves the factor matrices and then multiply-
ing them together to reconstruct the original tensor. Fol-
lowing the previous case, the first step of three neural net-
works to output a factor matrix of shape n × r will be
O(3m2lnr) = O(m2lnr). The next step is to multiply
these three-factor matrices of shape n × r. We multiply
the first two matrices to get an intermediate tensor of shape
n × n × r and then multiply this intermediate tensor with
the final factor matrix to get the final n × n × n. So, the
complexity of this operation is O(n2r2). Combining them
both will give the complexity of the forward pass of F-INR
in CP mode as:

O(m2lnr + n2r2) . (2)

B.1.2. Tensor Train (TT)
The Tensor Train (TT) [32] decomposition represents a
tensor as a sequence of lower-dimensional tensors (often
called “cores”) linked together in a chain. This decom-
position is particularly effective for higher-order tensors

3

φ1

X

φ3Z1 ... Zn

X1 ... Xn

Y1 ... Yn

FTD mode: TT

X x r

r x Y x r

Z x r

X x Y x Z

φ2

Φ

Figure 3. F-INR in TT mode for INR of shape X ×Y ×Z. Three
individual neural networks predict the cores of rank r for each cor-
responding dimension. The shape of the matrix/tensor is provided
below.

due to its sequential structure, which reduces memory re-
quirements. The TT decomposition of an N -mode tensor
X ∈ RI1×I2×...×IN can be expressed as:

Φ ≈
R1∑

r1=1

R2∑
r2=1

· · ·
RN−1∑

rN−1=1

ϕ
(1)
i1,r1

ϕ
(2)
i2,r1,r2

. . . ϕ
(N)
iN ,rN−1

,

(3)
where each ϕ(n) represents a core tensor associated with

the n-th mode. Here, Rn denotes the TT rank between
modes n and n+1, and ϕ(1) through ϕ(N) are the core ten-
sors. In this work, we confine ourselves to the case where
R1 = R2 = ... = Rn

Similar to the previous case, we estimate the forward
pass complexity in two steps. In the first step of the forward
pass of neural networks to predict the tensor cores, there is
a three-dimensional tensor of shape r × n × r. Therefore,
the complexity of this step is O(m2lnr2).

In the next step, these cores of shapes n×r, r×n×r, and
n×r are multiplied to get the original n×n×n. Therefore,
the complexity of this step will be O(n2r2). Combining
these two, the total complexity of F-INR in TT mode will
be:

O(m2lnr2 + n2r2) . (4)

B.1.3. Tucker (TU)
The Tucker decomposition (TU) [45] is a generalization
of the CP that represents the tensor using a core tensor and
multiple factor matrices, providing a flexible way to capture
interactions across modes. For a tensor Φ ∈ RI1×I2×...×IN ,
the Tucker decomposition is defined as:

Φ ≈ C ×1 ϕ
(1) ×2 ϕ

(2) . . .×N ϕ(N), (5)

where C ∈ RR1×R2×...×RN is the core tensor, ϕ(n) ∈
RIn×Rn are the factor matrices for each mode, and ×n de-
notes the mode-n tensor-matrix product.

φ1

φ3Z1 ... Zn

X1 ... Xn

Y1 ... Yn

FTD mode: TT

X x r

Y x r

Z x r

X x Y x Z

Φ

φ2

r x r x r

C

Figure 4. F-INR in Tucker mode for INR of shape X ×Y ×Z. C
is the tucker-core tensor. Three individual neural networks predict
the factor matrices of rank r for each corresponding dimension.
The shape of the matrix/tensor is provided below.

The first step of tucker mode is the same as CP. There-
fore, the complexity of the first step in this case will be the
same as CP: O(m2lnr). The second case involves the mul-
tiplication of three-factor matrices of shapes n × r with a
core of shape r × r × r, to get the original tensor of shape
n×n×n. This step involves n3 computations, each taking
O(r) multiplications, therefore having a total complexity
of O(n3r). Therefore, the forward pass complexity of an
F-INR in Tucker mode is:

O(m2lnr + n3r) . (6)

B.2. Backends
As explained, each tensor component of a particular mode
for a F-INR-setup is learned using a parameterized MLP.
This MLP is what we refer to as the backend. This back-
end can also be any neural network, but we stick to SOTA
architectures of Tanh and ReLU with Positional Encod-
ing [29], SIREN [40], WIRE [39], FINER [23, 55], and
Factor Fields [5]. This is because they are not application-
specific and are proven to apply to a wide range of INR-
related problems. Moreover, this study aims not to focus on
a particular application of INR but on a novel way to for-
mulate the problem by leveraging Tensor decompositions.
Nevertheless, any architecture can be used as a backend,
similarly, depending on the application at hand. Here, we
explain the backends used in this study and (informally) the
impact of F-INR reformulation on the backends.

B.2.1. ReLU MLP with Positional Encoding
Using Fourier features as positional encoding to improve
the learning capabilities of ReLU-based MLPs was intro-
duced in [29, 41]. The inputs ν are passed through the map-
ping

γ(ν) = [cos(2πBν), sin(2πBν)]T , (7)

where B is a random Gaussian matrix whose entries are
randomly drawn from a normal distribution N (0, σ2), this

4

term, σ, referred to as frequency, determines the frequency
of the matrix B. The impact of F-INR, or in general, us-
ing univariate neural networks, becomes prevalent because
higher-dimensional inputs need broader frequency coverage
to capture complex spatial patterns; otherwise, some fea-
tures may be poorly represented. In other words, univari-
ate neural networks and, by extension, F-INR-models have
more representational capacity for the same spectral cover-
age. The same explanation applies to the other backends.
In this work, we also tested for different frequencies of σ.
We show the σ value as a suffix for all the architectures.
For example, ReLU100 means that σ = 100. This usage of
different σ is why some results differ from other implemen-
tations. Please note that we conducted experiments with σ
of 0, 10, and 100. Hence, a value of zero would denote the
usage of no input embedding.

B.2.2. Tanh MLP
This model is a standard MLP where each ReLU activa-
tion is replaced with Tanh. Due to its saturating nature, the
Tanh activation is prone to the vanishing gradient problem, a
well-known issue that often leads to training instability and
lower representational fidelity compared to non-saturating
alternatives. We follow the same kind of embedding exper-
iments as for the other models.

B.2.3. SIREN
Introduced by [40], SIRENs use periodic sinusoidal acti-
vation functions facilitated by a principled weight initial-
ization scheme, where the weights wi are drawn from the
uniform distribution U(−

√
6/n,+

√
6/n). This initializa-

tion ensures that the input to each sine activation is normally
distributed with a standard deviation of 1 [40].

Finally, SIREN has the first layer of activations as
sin(ω0wix+bi), where ω0 = 30, to ensure periodicity[40].
In our implementations, we use the same prescribed ω and
initialization of weights.

B.2.4. FINER
Introduced by [23, 55], FINER follows a similar idea
to SIREN. While SIREN uses fixed sinusoidal activation
functions throughout the training, FINER ensures that he
wave can be modulated, resulting in the potential for more
adapted results.

B.2.5. WIRE
The Gabor wavelet activation function was introduced
in [39] as a direct extension and generalization of SIREN
and Gaussian non-linearity. The wavelet activation offers
localization property in a Gaussian/Radial basis activation
function and the frequency property offered by positional
encoding [29] and SIREN [40]. The complex form of a Ga-
bor wavelet is written as

ψ(x;ω, s) = ejωxe−|sx|2 , (8)

where ω is the parameter controlling the frequency and
s controls the scale (localization) of the wavelet activation.
These two are hyperparameters, giving rise to a lot of com-
binations. The authors suggested that the activation func-
tion itself is robust in performance and initialization over
a large set of combinations of these hyperparameters and
suggest using the combination of ω = 30, s = 30, which
we use in this paper for all the experiments unless and until
specified otherwise.

B.2.6. Factor Fields
Factor Fields introduces a unified and modular framework
for representing continuous signals like images and 3D
scenes. The core idea is to decompose a signal’s neural
representation into a product of multiple distinct factors.
Each factor consists of a coordinate transformation, which
pre-processes input coordinates (e.g., using periodic func-
tions or hash grids), and a field representation that maps
these transformed coordinates to features (e.g., using voxel
grids or a small MLP). The feature outputs from all fac-
tors are then multiplied element-wise and passed through
a final projection network to produce the output signal
value. This flexible design allows the framework to express
many prominent neural representations like NeRF [29],
TensoRF [4], and Instant-NGP [31] as special cases, thereby
offering a general language for designing and understanding
both existing and novel neural fields.

B.2.7. Hash Encoding as Embedding
Hash encoding was introduced in Instant Neural Graphics
Primitives [31] as an efficient encoding mechanism for spa-
tially varying inputs. Unlike dense grid-based feature rep-
resentations, hash encoding provides a memory-efficient al-
ternative by mapping input coordinates to a compact set of
feature vectors stored in a hash table. This encoding mech-
anism is particularly beneficial for high-resolution func-
tion approximation, as it enables fast feature retrieval while
maintaining a lightweight memory footprint.

The fundamental operation of hash encoding, follow-
ing [31], is defined as follows. Given an input coordinate
x ∈ Rd, the space is partitioned into L resolution levels,
where each level corresponds to a grid of resolution:

Rl = R0 · αl, l = 0, 1, . . . , L− 1 , (9)

where R0 is the base resolution, α is the per-level scale
factor, and L is the total number of levels.

For each level l, the input coordinate is mapped to a dis-
crete grid cell index:

i · l = ⌊Rlx⌋ . (10)

Rather than storing a dense grid, a hash function is ap-
plied to map grid coordinates to a fixed-size hash table of
size T :

5

h(il) =
(∑

j = 1dil, jpj

)
mod T , (11)

where pj are large prime numbers used to reduce hash
collisions. The retrieved feature vector f l is then interpo-
lated using trilinear interpolation:

f(x) =
∑

c ∈ 0, 1dwc · fh(h(il + c)) , (12)

where wc are interpolation weights based on the distance
from x to the grid corners.

The final multi-resolution encoding is obtained by con-
catenating the interpolated features from all levels:

f(x) =

L−1⊕
l=0

fl . (13)

This encoding scheme enables neural networks to effi-
ciently learn high-dimensional functions with significantly
reduced computational and memory overhead. We only em-
ploy hash encoding for video and image encoding tasks
because of the presence of gradient-based operations in
the remaining tasks, which hinders the usage of the global
hash grid due to non-differentiability and artifact genera-
tion [17, 31]. There are effective ways to implement hash
encoding for PDEs and Eikonal geometry solving [17], but
we leave this extension to the future.

B.3. Model Implementations in tiny-cuda-nn
To provide a rigorous comparison against the state-of-the-
art, we benchmark against optimized backbones where ap-
plicable, such as those implemented in the tiny-cuda-nn
framework [30] where applicable. These implementations
offer significant speedups through custom CUDA kernels
and drastically reduce the run time of the problem. They
slightly differ from the original implementations and might
yield different results, as often biases are not used in the
MLP layers. Nevertheless, to show that our speed-up results
are orthogonal to network design, we include these experi-
ments.

However, integrating our native PyTorch F-INR frame-
work with these specialized kernels is a non-trivial engi-
neering task that we consider out of scope for this work.
Furthermore, these kernels are fundamentally incompati-
ble with our PDE-constrained experiments (e.g., SDFs with
Eikonal regularization and Navier-Stokes super-resolution).
They are not designed to provide stable gradients with re-
spect to input coordinates that are essential for comput-
ing the physics-informed loss terms. Therefore, all exper-
iments requiring such gradients are performed using stan-
dard PyTorch [34] and jax [3] backbones for all methods
to ensure a fair and consistent evaluation. Either based on
the provided code by the authors or the given formulas.

B.4. Notes on SOTA Methods
To ensure a fair and rigorous comparison against state-of-
the-art methods, we utilized publicly available codebases
whenever possible. In some cases, minor modifications
were necessary to integrate these methods into our standard-
ized evaluation protocol (e.g., adapting them to our data
formats or PDE-constrained objectives) or newer software
requirements (mostly cuda or PyTorch upgrades). This
section documents all such changes to provide full trans-
parency and ensure the reproducibility of both our results
and our implementation changes of prior work. Therefore,
if we observe slight differences from the original numbers
reported in the respective papers, we assume this stems from
the outlined changes in this section.

B.4.1. CoordX
CoordX [22] proposes an axis-aligned split-MLP architec-
ture where coordinate-specific branches are progressively
fused in deeper layers. In contrast, our F-INR framework
enforces strict functional separability by keeping the uni-
variate networks entirely distinct through all layers.

To ensure a fair and reproducible comparison, we ad-
dressed outdated implementation challenges. The origi-
nal CoordX implementation relies on an outdated software
stack (PyTorch 1.3, CUDA 10.4, torchmeta) incompati-
ble with modern hardware. We, therefore, ported the official
codebase to a current environment (PyTorch 2.7.1, CUDA
12.6) and replaced the deprecated torchmeta library with
standard PyTorch equivalent procedures. To validate our
port, we verified that it reproduced the results of the origi-
nal CPU implementation on the provided cameraman image
benchmark, achieving a negligible error margin (ϵ < 0.02).

Despite these efforts, the original code’s modules for
SDF and NeRF tasks were not functional, preventing a di-
rect port. To maintain a rigorous comparison, we therefore
benchmark CoordX only on the image representation task,
where its functionality could be reliably verified.

B.4.2. NeuRBF
For our comparisons involving NeuRBF [7], we adopt the
official code and configurations provided by the authors. To
ensure a fair and direct runtime comparison on our target
hardware (NVIDIA RTX 3090), we made a single neces-
sary adjustment to the default configuration to fit the model
within the available GPU memory. All other aspects of
the original implementation remain unchanged. The exper-
iments were executed within our standardized environment
(PyTorch 2.7.1, CUDA 12.6) to maintain consistency across
all benchmarks.

This comparison is particularly salient on the Armadillo
model, for which NeuRBF was originally designed. For this
task, NeuRBF created an 80MB ply model to achieve its re-
ported quality. In contrast, our F-INR framework reaches

6

comparable fidelity with a ply model size of just 4MB,
demonstrating a 20-fold reduction.

B.4.3. Factor Fields
Factor Fields [5] is a key related work that also explores
a modular, factorization-based paradigm for INRs. For our
comparison, we utilize the official codebase provided by the
authors. To ensure a fair benchmark, we made minimal and
necessary adjustments to its default configuration, primar-
ily to align batch sizes with our hardware’s memory con-
straints and to integrate it into our standardized evaluation
environment (PyTorch 2.7.1, CUDA 12.6). Our goal in this
process was to evaluate Factor Fields under our unified ex-
perimental protocol while preserving the core architectural
and conceptual principles of the original work.

B.4.4. InstantNGP
Instant-NGP [31] sets a high bar for performance due to
its hash-grid encoding and highly optimized CUDA ker-
nels [44]. To ensure a fair comparison, our methodol-
ogy distinguishes between two use cases: for baseline re-
sults, we use the official CUDA implementation. To in-
tegrate hash encoding as a component within our F-INR
framework, we adapt pure PyTorch re-implementations [2,
42, 43]. This allows us to isolate the algorithmic gains
of our functional decomposition from hardware-level opti-
mizations.

7

C. Universal Approximation Theorem for Sep-
arable Neural Functions

We provide the theoretical foundation for our framework,
showing that a rank-r functional tensor decomposition us-
ing neural networks is a universal approximation, adapted
from [47]. This demonstrates that our method for mitigat-
ing the curse of dimensionality is theoretically sound.

Theorem 1 Let f : K → R be a continuous function on a
compact set K ⊂ Rd. For any ϵ > 0, there exists a rank-r
decomposition of univariate neural networks, f̂ , such that
∥f − f̂∥ < ϵ.

Proof. It is known that any continuous multivariate func-
tion can be arbitrarily well-approximated by a sum of sepa-
rable functions [8, 14, 35, 47]:

f(x1, . . . , xd) ≈
r∑

j=1

d⊗
i=1

gji (xi). (14)

For clarity, we prove the universal approximation property
for a single rank-1 term and note that it extends to the rank-
r sum. Let a rank-1 function be f(x) =

⊗d
i=1 gi(xi). We

approximate f with f̂(x) =
⊗d

i=1 ĝi(xi, θi), where each ĝi
is a neural network with parameters θi.

By the classical Universal Approximation Theorem [10,
16], for each continuous univariate function gi, there exists
a network ĝi such that for any ϵi > 0:

∥gi(xi)− ĝi(xi, θi)∥ < ϵi, ∀xi ∈ Ki, (15)

where Ki is a compact subset of R. The total approximation
error is given by:

∥f − f̂∥ =

∥∥∥∥∥
d⊗

i=1

gi(xi)−
d⊗

i=1

ĝi(xi, θi)

∥∥∥∥∥ . (16)

Using the identity for the difference of products [8, 14], the
term inside the norm can be expanded as:

d⊗
i=1

gi−
d⊗

i=1

ĝi =

d∑
j=1

(
j−1⊗
k=1

ĝk

)
⊗(gj−ĝj)⊗

 d⊗
l=j+1

gl

 .

(17)
By applying the triangle inequality and assuming a sub-
multiplicative cross-norm (i.e., ∥A ⊗ B∥ ≤ ∥A∥∥B∥) [14,

38], we can bound the total error:

∥f − f̂∥ ≤
d∑

j=1

∥∥∥∥∥∥
(

j−1⊗
k=1

ĝk

)
⊗ (gj − ĝj)⊗

 d⊗
l=j+1

gl

∥∥∥∥∥∥
(18)

≤
d∑

j=1

(
j−1∏
k=1

∥ĝk∥
)
∥gj − ĝj∥

 d∏
l=j+1

∥gl∥

 .

(19)

Substituting the bound from Equation (15), we get:

∥f − f̂∥ ≤
d∑

j=1

(
j−1∏
k=1

∥ĝk∥
)
ϵj

 d∏
l=j+1

∥gl∥

 . (20)

Since all functions are continuous on a compact set, their
norms (∥gl∥ and ∥ĝk∥) are bounded. By choosing each ϵj
to be sufficiently small, the total error ∥f − f̂∥ can be made
less than any desired ϵ > 0. This completes the proof.

This result demonstrates that our F-INR framework,
which uses neural networks as learnable factors in a tensor
decomposition, retains the universal approximation prop-
erty while breaking the curse of dimensionality.

8

D. Image Representation Details
D.1. MLP Architectrue
For our 2D image representation experiments, the F-INR
framework factorizes the implicit function into two univari-
ate MLPs, one for each spatial coordinate (x and y). The
outputs of these networks are combined via an outer prod-
uct to reconstruct the final image. The RGB channels are
treated as the output dimension of the final projection layer,
not as factorizable input dimensions.

To ensure a fair comparison between our method and
standard INRs, we carefully control the model capacity:
• F-INR Backbones: Each of the two univariate MLPs

consists of four hidden layers with 256 neurons referring
to the original works.

• Baseline Monolithic INRs: For a comparable parameter
count, each baseline model uses a single, monolithic MLP
with several hidden layers with 256 neurons referring to
the original works.
We specifically evaluate three configurations to analyze

the effect of Positional Encoding (PE) [29] and Hash En-
coding (HE) [31], here nomination is explained based on
the ReLU model but holds for all other tested backlines:
• ReLU+PE000: A ReLU MLP without Positional Encod-

ing.
• ReLU+PE010: A ReLU MLP with PE using a frequency

scale of σ = 10.
• ReLU+PE100: A ReLU MLP with PE using a frequency

scale of σ = 100.
• ReLU+HE: A ReLU MLP with HE using the default con-

figuration [31].
This setup allows for a direct and principled comparison

of our factorized approach against standard monolithic ar-
chitectures.

Each model is trained for 50,000 iterations using the
Adam optimizer with default parameters to learn the par-
rot image of DIV2K [1].

D.2. Quantitative Results
Here, we provide the PSNRs for all the models for varying
ranks and the baselines in Figure 5 and the external HTML
table of all tested combinations.

We use such visualizations of quantitative results to sim-
plify the information given in the tables. In the visualiza-
tion, the green shaded region indicates that the model out-
performed the best-performing baseline, while the red re-
gion means it performed worse than the worst-performing
baseline. We provide such visualizations for all the ex-
periments. The trend is this: As the rank increases, the
PSNR increases, and the representation capacity increases.
This comes along with a slight increase in computation
time. Larger ranks even outperform the baselines, having
the same backend neural network, all while having a strong

1 100 200

25

30

35

P
S

N
R

[d
B

]

Rank 16

1 100 200

Rank 32

1 100 200

Rank 64

1 100 200
Speedup [x]

25

30

35

P
S

N
R

[d
B

]

Rank 128

1 100 200
Speedup [x]

Rank 256

1 100 200
Speedup [x]

Rank 316

Relu0

Relu10

Relu100

Siren

Wire

Hash

Baseline Version

Worse Than Baseline

Better Than Baseline

Figure 5. We display how F-INRs and baseline models compare
regarding speed and PSNR value for the image encoding task. The
circle radius describes the compression rate compared to the base-
line. Models with a rank of 16 are similar to the worst baseline
method, indicating that such models cannot fully represent the im-
age data. The first major quality improvements can be seen at rank
128, where the ReLU100 models outperform the baseline while
having a strong speedup. The performance is shown by hash en-
coding, followed by ReLU100 and WIRE models.

speedup. This proves the effectiveness of F-INRs. We also
find some interesting patterns in the speedups. The high-
est speedup is achieved for Hash encoding, owing to using
1D hash tables instead of 2D. Also, for positional encod-
ing, the time increases with increasing frequencies because
of an increase in the size of the encoded input for higher
frequencies.

D.3. Qualitative Results
More qualitative examples for all 128 combinations are pro-
vided in the accompanying zip folder for both the parrot
and butterfly images. For the original image we refer to the
DIV2K [1] validation dataset.

D.4. Ablations: Single Image Super Resolution and
Denoising

Single Image Super-Resolution (SISR) and image denois-
ing are fundamental tasks in implicit neural representations
(INRs), closely related to those explored in WIRE [39].
These tasks test the ability of an INR model to reconstruct
fine details and filter out unwanted noise, with the backend
architecture playing a dominant role in determining perfor-
mance. At the same time, tensor decomposition primarily
contributes to computational efficiency.

We use a butterfly image from DIV2K [1] for the super-
resolution task and induce a 4× sparsity by sub-sampling
pixels before training, following the same setup as in [39].
The original dimensions of the image are 1356 × 2040,
while the downsampled image is: 339 × 510. The F-INR
models are trained on this sparse representation for back-

9

Ground Truth Baseline WIRE WIRE-Rank 316

WIRE-Rank256 ReLU+PE-Rank 316 SIREN-Rank 316

Figure 6. Single Image Super-Resolution using F-INR. Here, we observe that qualitatively F-INR performs the same as baseline WIRE.
Therefore, F-INR preserves the inherent quality salient to WIRE architecture, forming better priors. Image taken from [39].

ends and ranks until 316. At inference, the learned function
is evaluated at the original resolution, producing a recon-
structed high-resolution image. The reconstruction is then
quantitatively compared to the ground truth.

Our experiments show that the choice of backend archi-
tecture is the most significant factor affecting performance.
The decomposition method does not inherently improve re-
construction quality but accelerates training and inference.
WIRE emerges as the best-performing backend, aligning
with observations from its baseline implementation. In con-
trast, hash encoding and large positional encodings intro-
duce artifacts as they struggle to generalize from sparse
training data, leading to aliasing effects and undesired high-
frequency components [17, 31, 41].

Interestingly, rank has minimal impact on super-
resolution performance. Since the task primarily requires
the model to interpolate missing pixel values rather than
compressing or filtering data, increasing rank does not sig-
nificantly alter results. This highlights the backend’s impor-
tance over decomposition choices in super-resolution tasks.
The visualizations and the evolution of PSNR values over
different ranks and backends are provided in Figure 7 and
Figure 6.

For the denoising task, we introduce shot Gaussian noise
to the original image of the parrot image from DIV2K [1]
from (1356 × 2040) and train the F-INR model to recon-
struct the clean version, following [39]. The performance is

50 100 150 200 250 300
Rank

26.2

26.4

26.6

26.8

27.0

P
S

N
R

(d
B

)

Rank vs PSNR for different backends

Backend

WIRE

SIREN

ReLU-10

Figure 7. Evolution of Rank vs. PSNR for different backends for
the Single Image Super-resolution task. We observe that WIRE
performs best and is robust in ranking. SIREN degrades perfor-
mance with increased rank.

evaluated by comparing the denoised output to the ground
truth, assessing whether the INR learns to remove noise ef-
fectively while preserving structural details. The plot for
comparing various Ranks and backends is given in Figure 9,
and the visualizations are provided in Figure 8.

Unlike super-resolution, where rank is negligible, rank

10

Ground Truth Noisy WIRE-Rank 1356

WIRE-Rank 1024 Baseline WIRE SIREN-Rank 768

Figure 8. Visualizations for the denoising task of a parrot. Image taken from [39]. F-INR with WIRE backend retains the robustness of
WIRE, emphasizing the influence of backend for the task-specific performance of F-INRs.

0 200 400 600 800 1000 1200 1400
Rank

26

27

28

29

30

31

P
S

N
R

Rank vs PSNR for different backends

Backend

WIRE

SIREN

ReLU-10

Figure 9. Rank vs PSNR for the denoising task for various back-
ends of F-INR. We observe that the wire is robust and almost rank-
independent. In contrast, SIREN and ReLU, with PE, have a de-
terioration with increasing rank, which might be due to overfitting
of the noisy image.

selection is critical for denoising. A rank that is too high
negatively impacts performance, as an excessively expres-
sive model overfits the noise rather than learning the un-
derlying clean structure. Lower-rank decompositions act
as a natural regularizer, preventing the model from captur-

ing high-frequency noise and improving denoising perfor-
mance.

As in the super-resolution task, WIRE remains the most
effective backend, producing cleaner reconstructions. Hash
encoding and large positional encodings again lead to un-
desirable artifacts, reinforcing the importance of selecting a
backend suited for structured image tasks.

11

E. Video Representation Extension
We extend the 2D image representation framework to
videos by incorporating a third factor for the temporal di-
mension. The video signal is thus modeled as the ten-
sor product of three univariate neural networks, each cor-
responding to a single spatio-temporal axis (x, y, t):

ϕ1(x; θ1)⊗ ϕ2(y; θ2)⊗ ϕ3(t; θ3) 7→ (r, g, b). (21)

Here, ϕ3(t; θ3) is the network modeling the temporal coor-
dinate, where t corresponds to the frame index. The model
architecture for each factor follows the same principles de-
scribed for the image representation task.

E.1. Model Architectures
For this benchmark, we use a 300-frame video of a per-
son at 256 × 256 resolution [54], visualized in Figure 11.
Based on our 2D results, we evaluate the ReLU+PE100,
SIREN, and WIRE backbones across all tensor decompo-
sition modes. To ensure a fair comparison, each of F-INR’s
three univariate networks uses 3 hidden layers with 256 neu-
rons, while monolithic baselines use a single 4-layer MLP
with 256 neurons. All models are trained for 50k epochs
using the Adam optimizer with the largest batch size that
fits into GPU memory.

A key advantage of our framework is its modularity,
which allows for assigning different encoding strategies to
different input dimensions. This adaptability is showcased
in our video experiments, where the best-performing con-
figuration combines hash encoding for the spatial dimen-
sions (ϕ1, ϕ2) with Fourier features for the temporal di-
mension (ϕ3). This hybrid approach leverages the distinct
strengths of each encoding type for their respective do-
mains. This flexibility also extends to the decomposition
modes; for the Tensor-Train (TT) decomposition, we align
its 3-way tensor core with the temporal dimension, which
empirically provided the most stable training.

For clarity, we note that our comparison does not include
dedicated neural video compression algorithms like NeV-D
or COIN++ [6, 11, 26]. These methods operate on a dif-
ferent paradigm of frame-wise feature learning followed by
quantization, which is distinct from our goal of learning a
single, continuous spatio-temporal representation.

E.2. Results
The open source video of the face of the girl, the results for
various ranks and backends are given in Figure 10 and Ta-
ble 1. Our results indicate that the proposed method yields
faster and more accurate results for the same backend when
the rank is sufficiently large. Notably, the top three mod-
els in terms of PSNR are highlighted in the table. We omit
Hash encoding because of its poor performance when used
for all the neural networks as the backend. However, the

best performance is achieved when the neural network for
frame dimension has a Positional Encoding, and the neural
networks for spatial networks have hash encoding. We con-
ducted additional experiments for this specific combination
for rank 256 to show how the modularity of F-INRs allows
for getting better solutions. Furthermore, our experiments
reveal that the WIRE backend exhibits suboptimal perfor-
mance for the video encoding task under default parame-
ters, whereas the TT mode achieves the best results. This
poor performance of WIRE may be remedied by decreasing
the scale parameter. We provide the videos together in MP4
format as external files.

Figure 10. We visualize PSNR values given in the Table 1. Here,
different markers are assigned for each mode, and different colors
are assigned for each backend. We only use rank ≥ 64 and three
backends, WIRE, SIREN, and ReLU100. Many configurations
surpass the baseline implementation (above green), and of all the
modes, TT has consistently the best results.

12

G
ro

u
n

d
T

ru
th

PSNR: NA Time:NA

B
as

el
in

e-
S

IR
E

N

PSNR: 81.4±1.24 Time:12735.68

T
T

-R
eL

U
+

P
E

-2
56

PSNR: 86.7±1.12 Time:420.12

T
T

-S
IR

E
N

-1
28

PSNR: 88.5±1.17 Time:221.81

T
T

-P
E

+
H

as
h

-2
56

PSNR: 89.2±1.13 Time:385.11

C
P

-W
IR

E
-6

4

PSNR: 69.2±3.17 Time:106.54

Figure 11. Encoding video with nuanced facial features [54] (publicly available) using F-INR: The mean PSNR (dB) and model
are shown in the first column; training time is in the last. SIREN [40] and ReLU [27] with positional encoding [29] outperform their
baseline, capturing facial details and maintaining temporal consistency, while WIRE [39] performs worse. The best performance (fifth
row) was achieved using a combination of hash [31] and positional encoding for spatial and frame dimensions, respectively, highlighting
the modularity of F-INR. Additional results are in the supplementary.

13

Backend Mode Rank PSNR (dB) SSIM Time (s)

ReLU100 - - 77.82 ± 0.18 0.93 13327
SIREN - - 78.74 ± 0.19 0.95 12735
WIRE - - 71.38 ± 0.22 0.75 12923
ReLU + Hash - - 71.82 ± 0.23 0.74 8243

CP 64 73.38 ± 0.03 0.79 110
CP 128 75.21 ± 0.15 0.83 152
CP 256 77.07 ± 0.33 0.86 208
TT 64 78.92 ± 0.32 0.91 126

ReLU100 TT 128 80.74 ± 0.17 0.93 221
TT 256 82.55 ± 0.63 0.95 420
Tucker 64 76.20 ± 0.81 0.85 161
Tucker 128 77.48 ± 0.81 0.88 355
Tucker 256 79.23 ± 0.83 0.91 479

CP 64 74.08 ± 0.20 0.80 111
CP 128 76.74 ± 0.14 0.85 153
CP 256 79.10 ± 0.16 0.89 208
TT 64 80.96 ± 0.31 0.93 129

SIREN TT 128 86.46 ± 0.19 0.97 220
TT 256 88.28 ± 0.19 0.98 301
Tucker 64 79.11 ± 0.18 0.90 137
Tucker 128 80.98 ± 0.27 0.93 222
Tucker 256 75.37 ± 0.52 0.90 380

CP 64 73.32 ± 1.45 0.78 1063
CP 128 74.89 ± 0.81 0.82 148
CP 256 75.97 ± 0.85 0.84 203
TT 64 76.09 ± 0.83 0.85 122

WIRE TT 128 75.77 ± 1.88 0.84 187
TT 256 75.17 ± 1.81 0.83 296
Tucker 64 71.69 ± 1.96 0.74 182
Tucker 128 71.19 ± 1.88 0.73 247
Tucker 256 71.57 ± 2.05 0.74 374

ReLU100 +Hash CP 256 80.4 ± 0.20 0.92 186
ReLU100 + Hash TT 256 89.2 ± 0.13 0.98 385
ReLU100 + Hash Tucker 256 80.35 ± 2.63 0.74 427

Table 1. Mean PSNR and SSIM values across all the encoded
video frames and ground truth for more combinations of ranks and
backends. The times are calculated for complete 50000 iterations
for all the runs. We see that F-INR s gives faster, better results
for the same backend for a large enough rank. The top three per-
forming models based on PSNRs are highlighted here. The WIRE
backend performs poorly with the video encoding task (for the de-
fault parameters), and TT mode performs the best. The final row
contains a combination of hash and positional encoding, yielding
better results. This table is visualized for speedup comparisons
(without combinations of PE and Hash) in Figure 10.

14

F. Geometry Learning via Signed Distance
Functions

For our geometry encoding task, we adopt a physics-
informed approach, learning Signed Distance Functions
(SDFs) by enforcing the Eikonal equation as a PDE regular-
ization. This principled objective ensures the learned func-
tion represents a valid metric space, a critical property often
overlooked by simpler data-fitting criteria. Consequently,
this rigorous paradigm precludes methods whose architec-
tures are not fully differentiable with respect to their input
coordinates and thus cannot support the required gradient-
based regularization.

Our experimental protocol is as follows. We evaluate
four intricate models from the Stanford 3D Scan Reposi-
tory [9, 12, 21, 46]: the Armadillo, Dragon, Lucy, and Thai
statues. To generate the ground-truth SDF data, we convert
the original .obj meshes using the mesh2sdf library [49].
The final, continuous SDFs learned by our models are vi-
sualized by extracting the zero-level set using the standard
Marching Cubes algorithm [24], following common prac-
tice [5].

F.1. Architecture and Training
For the SDF task, our F-INR framework factorizes the 3D
function into three univariate neural networks, one for each
spatial axis. We evaluate all three tensor decomposition
modes (CP, TT, Tucker). To ensure a fair comparison of
model capacity, we define our architectures as follows:
• F-INR Models: Use three separate 4-layer MLPs, each

with 256 neurons.
• Monolithic INR Baselines: Use a single 5-layer MLP

with 256 neurons.
We also benchmark against state-of-the-art methods like

DeepSDF [33] and IGR [13]. While these methods are typ-
ically trained on point clouds, we have adapted their frame-
works to train directly on our voxel grid data. This ensures
all methods are evaluated on identical input data and under
the same Eikonal PDE objective. All models are trained for
50k iterations using the Adam optimizer. The qualitative
visualizations presented in the paper consistently showcase
the best-performing model configuration for each approach.

F.2. Ablations
We use IoU and MSE metrics to quantify the predicted val-
ues against the ground truth. All the results for Lucy are
provided in Figure 22 and Table 2. For Armadillo, Figure 13
and the tables are provided as an additional HTML file. Fi-
nally, for the Thai statue, the results are provided in Table 3
and Figure 24 and also visualized in Figure 21. All the re-
sults show that F-INR models achieve a better result in less
time. We also tested the effect of the Eikonal PDE on the so-
lution. We vary the relative weight of the Eikonal term with

Figure 12. Quantitative results IoU vs Speedup, for model Ar-
madillo. The general trend is that a higher rank leads to a better
IoU. Tensor-Train [32] models perform the best in several models
compared to the other two models.

respect to other loss terms for the best performing F-INR,
i.e., mode TT with rank 128 and with ReLU+P010 backend,
and the results are given in Figure 23. We observe that the
Eikonal PDE significantly affects finding a better solution.

F.3. Qualiative Results
We provide more examples here in the document of the Ar-
madillo model as well as all combinations as additional ex-
ternal image files. The best .ply models are also provided
in the accompanying zip folder. Please note that all exported
models are normalized in size for easier rendering. Please
note that for Lucy and Thai statuette, a simpler rendering
pipeline was employed during the ablation studies without
a texture material, resulting in a flatter visual appearance.

15

Figure 13. Qualitative Armadillo results. This figure illustrates
how the choice of INR backbone and tensor rank critically affects
reconstruction quality. While certain configurations, such as a
low-rank (CP-32) SIREN model, can fail to converge and produce
severe artifacts, others demonstrate high robustness. Notably, the
WIRE backbone consistently yields high-fidelity reconstructions
across all tested ranks, highlighting the importance of the interplay
between a backbone’s inductive bias and the capacity afforded by
the tensor decomposition.

Figure 14. Qualitative Lucy results.

16

Figure 15. Qualitative Lucy results.

Figure 16. Qualitative Lucy results.

17

Ground Truth WIRE PE010 TT 128

Ground Truth

MSE: 0.0110
IOU: 0.9977
Speed: 807 s

WIRE PE010 TT 128

MSE: 0.0135
IOU: 0.9920
Speed: 713 s

ReLU PE010 TU 128

MSE: 0.0859
IOU: 0.9893
Speed: 509 s

SIREN TU 064

MSE: 0.0335
IOU: 0.9814
Speed: 754 s

TANH PE010 TT 128

MSE: 0.0399
IOU: 0.9789
Speed: 493 s

FINER PE010 TT 064

Figure 17. Qualitative Armadillo comparison.

Ground Truth WIRE PE010 TT 128

Ground Truth

MSE: 0.0083
IOU: 0.9996
Speed: 745 s

WIRE PE010 TT 128

MSE: 0.0083
IOU: 0.9843
Speed: 702 s

ReLU PE010 TT 128

MSE: 0.0249
IOU: 0.9598
Speed: 499 s

TANH PE010 TU 064

MSE: 0.0758
IOU: 0.9598
Speed: 664 s

SIREN CP 064

MSE: 0.0258
IOU: 0.9581
Speed: 722 s

FINER PE010 TT 128

Figure 18. Qualitative Statuette comparison.

18

Ground Truth WIRE PE010 TU 128

Ground Truth

MSE: 0.0098
IOU: 0.9996
Speed: 819 s

WIRE PE010 TU 128

MSE: 0.0089
IOU: 0.9879
Speed: 711 s

ReLU PE010 TU 128

MSE: 0.0305
IOU: 0.9593
Speed: 723 s

TANH PE010 TU 128

MSE: 0.0244
IOU: 0.9486
Speed: 756 s

FINER PE010 TT 128

MSE: 0.1321
IOU: 0.7553
Speed: 377 s

SIREN CP 032

Figure 19. Qualitative Lucy comparison.

Ground Truth WIRE PE010 TT 064

Ground Truth

MSE: 0.0111
IOU: 0.9988
Speed: 481 s

WIRE PE010 TT 064

MSE: 0.0130
IOU: 0.9810
Speed: 755 s

ReLU PE010 TU 128

MSE: 0.0370
IOU: 0.9573
Speed: 771 s

TANH PE010 TU 128

MSE: 0.1128
IOU: 0.9032
Speed: 389 s

SIREN CP 032

MSE: 0.0568
IOU: 0.7843
Speed: 380 s

FINER CP 032

Figure 20. Qualitative Dragon comparison.

19

Figure 21. Here, we visualize the qualitative differences in complex Thai statuette 3D scan reconstructions. All models have been obtained
from SDF using the marching cubes algorithm with the additional step of Laplacian smoothing to reduce introduced artifacts. We compare
the results to the obtained ground truth SDF, the worst and best-performing baseline methods, and the best-decomposed version. Addition-
ally, we show how a too low rank (r = 16) does not yield a successful reconstruction.

Figure 22. Quantitative results IoU vs Speedup, for model Lucy.
The general trend is that a larger rank leads to a better IoU. Tensor-
Train models perform the best when compared to the other two
models, and in several models, they are better than baselines.

Figure 23. The effect of the Eikonal term on the learned SDF for
the Lucy model. We varied the relative weight of the Eikonal term
for the best performing F-INR: Mode TT Rank 128 and ReLU10
Backend. We observe that the presence of the Eikonal term signif-
icantly affects the solution, and after a relative weight of around
0.5, its effect is constant.

20

Backend Mode Rank IoU L 2 Error Time (s)

ReLU0 - - 0.884 ± 0.007 0.213 ± 0.003 15963
ReLU10 - - 0.908 ± 0.009 0.188 ± 0.004 16428
ReLU20 - - 0.973 ± 0.006 0.163 ± 0.004 16923
SIREN - - 0.971 ± 0.005 0.126 ± 0.010 16138
WIRE - - 0.975 ± 0.009 0.062 ± 0.064 16157
DeepSDF [33] - - 0.978 ± 0.010 0.062 ± 0.015 18375
IGR [13] - - 0.985 ± 0.004 0.067 ± 0.014 16912
Factor Fields [5] - - 0.968 ± 0.01 N/A 280

CP 16 0.852 ± 0.007 0.225 ± 0.005 178
CP 32 0.869 ± 0.015 0.213 ± 0.007 194
CP 64 0.883 ± 0.007 0.213 ± 0.003 228
CP 128 0.885 ± 0.006 0.211 ± 0.004 304
TT 16 0.884 ± 0.009 0.207 ± 0.007 177

ReLU0 TT 32 0.896 ± 0.009 0.198 ± 0.005 195
TT 64 0.907 ± 0.003 0.191 ± 0.002 250
TT 128 0.923 ± 0.003 0.181 ± 0.002 448
TU 16 0.864 ± 0.006 0.220 ± 0.008 170
TU 32 0.880 ± 0.003 0.209 ± 0.005 192
TU 64 0.904 ± 0.006 0.198 ± 0.003 256
TU 128 0.922 ± 0.005 0.186 ± 0.004 465

CP 16 0.869 ± 0.019 0.217 ± 0.009 190
CP 32 0.933 ± 0.013 0.159 ± 0.010 204
CP 64 0.961 ± 0.002 0.121 ± 0.003 238
CP 128 0.973 ± 0.001 0.100 ± 0.002 314
TT 16 0.941 ± 0.007 0.133 ± 0.015 194

WIRE TT 32 0.976 ± 0.002 0.089 ± 0.002 210
TT 64 0.987 ± 0.001 0.069 ± 0.003 266
TT 128 0.991 ± 0.001 0.058 ± 0.003 475
TU 16 0.909 ± 0.014 0.198 ± 0.005 188
TU 32 0.953 ± 0.004 0.137 ± 0.003 208
TU 64 0.971 ± 0.001 0.111 ± 0.002 264
TU 128 0.977 ± 0.001 0.092 ± 0.005 452

CP 16 0.829 ± 0.021 0.217 ± 0.034 191
CP 32 0.912 ± 0.012 0.176 ± 0.018 205
CP 64 0.962 ± 0.004 0.118 ± 0.002 239
CP 128 0.989 ± 0.001 0.076 ± 0.002 315
TT 16 0.928 ± 0.010 0.142 ± 0.014 195

ReLU20 TT 32 0.988 ± 0.001 0.070 ± 0.003 211
TT 64 0.999 ± 0.000 0.055 ± 0.005 267
TT 128 0.999 ± 0.000 0.045 ± 0.003 477
TU 16 0.892 ± 0.043 0.185 ± 0.007 189
TU 32 0.948 ± 0.021 0.146 ± 0.005 209
TU 64 0.984 ± 0.039 0.104 ± 0.028 265
TU 128 0.860 ± 0.035 0.146 ± 0.043 450

CP 16 0.882 ± 0.022 0.235 ± 0.010 181
CP 32 0.928 ± 0.016 0.193 ± 0.008 199
CP 64 0.967 ± 0.003 0.141 ± 0.004 231
CP 128 0.979 ± 0.001 0.119 ± 0.001 307
TT 16 0.894 ± 0.010 0.136 ± 0.002 179

SIREN TT 32 0.983 ± 0.002 0.066 ± 0.002 197
TT 64 0.998 ± 0.000 0.063 ± 0.011 252
TT 128 0.994 ± 0.002 0.105 ± 0.010 454
TU 16 0.899 ± 0.028 0.182 ± 0.007 172
TU 32 0.919 ± 0.015 0.141 ± 0.006 195
TU 64 0.977 ± 0.018 0.098 ± 0.020 259
TU 128 0.980 ± 0.030 0.121 ± 0.374 469

CP 16 0.885 ± 0.042 0.231 ± 0.018 170
CP 32 0.903 ± 0.010 0.209 ± 0.004 187
CP 64 0.947 ± 0.005 0.159 ± 0.004 221
CP 128 0.956 ± 0.002 0.135 ± 0.006 302
TT 16 0.932 ± 0.011 0.179 ± 0.001 169

ReLU10 TT 32 0.943 ± 0.007 0.162 ± 0.002 186
TT 64 0.945 ± 0.006 0.159 ± 0.002 239
TT 128 0.937 ± 0.007 0.164 ± 0.008 424
TU 16 0.911 ± 0.013 0.223 ± 0.006 165
TU 32 0.932 ± 0.004 0.190 ± 0.001 187
TU 64 0.930 ± 0.032 0.168 ± 0.244 249
TU 128 0.851 ± 0.038 0.458 ± 0.216 460

Table 2. Results for geometry encoding task via SDFs. Here we
provide both IoU and L2 Error between the predicted SDFs and
the Ground truth, for the Lucy model, taken from [9, 12, 21, 46].
A visualization of IoU values is provided in Figure 22.

Figure 24. Quantitative results IoU vs. Speedup, for model Thai
Statue. The general trend is that a larger rank leads to a better IoU.
Tensor-Train models perform the best when compared to the other
two models, and in several models, they are better than baselines.
Even though all values seem closer, the visualizations shown in 21
show the qualitative differences.

21

Backend Mode Rank IoU L 2 Error Time (s)

ReLU0 - - 0.874 ± 0.007 0.229 ± 0.003 16148
ReLU10 - - 0.898 ± 0.009 0.192 ± 0.004 16753
ReLU20 - - 0.973 ± 0.006 0.163 ± 0.004 17023
SIREN - - 0.971 ± 0.005 0.126 ± 0.010 16438
WIRE - - 0.975 ± 0.009 0.062 ± 0.064 16557
Factor Fields [5] - - 0.954 ± 0.001 N/A 275

CP 16 0.858 ± 0.002 0.229 ± 0.002 342
CP 32 0.871 ± 0.003 0.227 ± 0.001 377
CP 64 0.873 ± 0.002 0.217 ± 0.004 486
CP 128 0.879 ± 0.002 0.205 ± 0.005 670
TT 16 0.887 ± 0.005 0.209 ± 0.006 324

ReLU0 TT 32 0.897 ± 0.002 0.187 ± 0.006 351
TT 64 0.919 ± 0.007 0.179 ± 0.006 526
TT 128 0.924 ± 0.001 0.167 ± 0.003 902
TU 16 0.869 ± 0.006 0.219 ± 0.006 308
TU 32 0.887 ± 0.004 0.212 ± 0.005 347
TU 64 0.901 ± 0.004 0.196 ± 0.004 519
TU 128 0.915 ± 0.005 0.186 ± 0.004 945

CP 16 0.918 ± 0.008 0.227 ± 0.004 357
CP 32 0.952 ± 0.003 0.176 ± 0.007 379
CP 64 0.965 ± 0.001 0.133 ± 0.004 492
CP 128 0.973 ± 0.001 0.107 ± 0.003 686
TT 16 0.960 ± 0.003 0.156 ± 0.005 353

WIRE TT 32 0.975 ± 0.001 0.097 ± 0.003 396
TT 64 0.982 ± 0.000 0.076 ± 0.002 595
TT 128 0.987 ± 0.001 0.069 ± 0.001 1047
TU 16 0.933 ± 0.004 0.207 ± 0.006 351
TU 32 0.962 ± 0.002 0.154 ± 0.004 387
TU 64 0.970 ± 0.001 0.120 ± 0.003 565
TU 128 0.976 ± 0.001 0.101 ± 0.003 1028

CP 16 0.912 ± 0.010 0.217 ± 0.010 365
CP 32 0.948 ± 0.002 0.170 ± 0.017 388
CP 64 0.972 ± 0.002 0.130 ± 0.006 503
CP 128 0.984 ± 0.001 0.089 ± 0.003 704
TT 16 0.960 ± 0.005 0.165 ± 0.010 359

ReLU20 TT 32 0.983 ± 0.002 0.080 ± 0.005 397
TT 64 0.997 ± 0.001 0.059 ± 0.003 585
TT 128 0.999 ± 0.000 0.051 ± 0.001 1029
TU 16 0.939 ± 0.005 0.195 ± 0.005 341
TU 32 0.967 ± 0.016 0.144 ± 0.008 376
TU 64 0.936 ± 0.102 0.142 ± 0.022 543
TU 128 0.967 ± 0.129 0.109 ± 0.061 989

CP 16 0.913 ± 0.007 0.241 ± 0.006 357
CP 32 0.950 ± 0.004 0.192 ± 0.005 372
CP 64 0.967 ± 0.001 0.148 ± 0.003 485
CP 128 0.976 ± 0.001 0.122 ± 0.001 673
TT 16 0.936 ± 0.004 0.145 ± 0.004 327

SIREN TT 32 0.976 ± 0.002 0.075 ± 0.001 361
TT 64 0.995 ± 0.000 0.060 ± 0.024 534
TT 128 0.991 ± 0.008 0.097 ± 0.020 912
TU 16 0.934 ± 0.017 0.195 ± 0.015 318
TU 32 0.965 ± 0.004 0.144 ± 0.001 352
TU 64 0.979 ± 0.007 0.102 ± 0.033 528
TU 128 0.983 ± 0.493 0.143 ± 0.446 961

CP 16 0.913 ± 0.009 0.236 ± 0.007 325
CP 32 0.945 ± 0.007 0.201 ± 0.006 353
CP 64 0.955 ± 0.001 0.162 ± 0.002 471
CP 128 0.961 ± 0.001 0.138 ± 0.003 656
TT 16 0.935 ± 0.002 0.186 ± 0.004 303

ReLU10 TT 32 0.942 ± 0.002 0.161 ± 0.002 339
TT 64 0.943 ± 0.001 0.157 ± 0.003 513
TT 128 0.942 ± 0.003 0.157 ± 0.003 840
TU 16 0.918 ± 0.009 0.221 ± 0.005 290
TU 32 0.939 ± 0.004 0.191 ± 0.003 326
TU 64 0.937 ± 0.046 0.182 ± 0.110 494
TU 128 0.874 ± 0.337 0.279 ± 0.304 943

Table 3. Results for Geometry encoding task: Here, we provide
both IoU and L2 Error between the predicted SDFs and Ground
truth for the Thai model, taken from [9]. A visualization of IoU
values is provided in Figure 24 and the SDFs are visualized in
Figure 21.

22

G. Neural Radiance Fields
Neural Radiance Fields (NeRFs) have emerged as one of the
most prominent and widely adopted applications of Implicit
Neural Representations (INRs). At their core, NeRFs learn
a function

f(x, y, z, θ, ϕ) = (R,G,B, σ) (22)

that maps 3D spatial coordinates and 2D viewing directions
to color and density values. This function is typically opti-
mized using a large collection of posed images, where train-
ing proceeds by casting rays from the camera centers, sam-
pling points along each ray, querying the network, and com-
positing the results via volume rendering. This process, ray
marching, translates the discrete supervision from images
into a continuous coordinate-based learning problem.

A critical distinction between NeRF and other INR tasks
is that the sampling is unstructured: we do not have a regu-
lar voxel grid, image plane, or temporal volume. Instead,
the network must learn from arbitrary 5D input queries
along thousands of rays per scene. In contrast, prior F-INR
tasks like image representation or SDF modeling involved
structured domains (e.g., 2D pixel grids or 3D voxel vol-
umes), where low-rank patches could be more easily ex-
tracted and decomposed.

Previous efforts like TensoRF [4] and Plenoxels [52]
introduced low-rank factorization or voxel-level grids to
speed up NeRF training. However, these still rely on trilin-
ear interpolation and do not use per-axis neural networks.
They maintain a monolithic representation where the inter-
polation layers handle separability rather than the model it-
self.

G.1. Architecture
In F-INR, we reformulate the NeRF learning problem by
decomposing the input coordinates axis-wise. Each of the
five input dimensions, three spatial and two angular, is han-
dled by a dedicated univariate MLP, and the outputs are
combined via a tensor decomposition (CP, TT, or Tucker).
This not only restructures the representation but also re-
duces redundancy and enables fine control over the rank and
mode of the decomposition.

Given the massive variety of NeRF backbones and ray-
marching optimizations in the literature, we do not aim to
exhaustively benchmark across all variants. Instead, we fo-
cus on a representative and highly optimized baseline: In-
stantNGP [31]. This model relies heavily on a 3D multires-
olution hash encoding, which forms the bulk of its compu-
tation.

Our adaptation replaces this 3D hash grid with three 1D
hash grids, one per spatial axis, leaving all other compo-
nents (ray tracing, batching, rendering, loss computation)
identical. This effectively transforms InstantNGP into its F-
INR counterpart. While we retain the same resolution and

feature dimensions per level, the overall representation be-
comes more compact and structured.

Instead of a 3D hash grid, we use three independent 1D
hash encodings for each axis.

γx(x) = concatLl=1γx,l(x) ∈ RL·r (23)

γy(y) = concatLl=1γy,l(y) ∈ RL·r (24)

γz(z) = concatLl=1γz,l(z) ∈ RL·r (25)

Each 1D hash grid uses linear interpolation:

γx,l(x) = (1− wx) · fx,l,i + wx · fx,l,i+1 (26)

The features are then combined via tensor decomposi-
tion, as usual in a F-INR manner:
• CP Decomposition:

γCP(x, y, z) = γx(x) ◦ γy(y) ◦ γz(z) (27)

• Tensor-Train (TT) Decomposition:

γTT(x, y, z) = G1[γx(x)] ·G2[γy(y)] ·G3[γz(z)] (28)

• Tucker Decomposition:

γTucker(x, y, z) = G ×1 γx(x)×2 γy(y)×3 γz(z) (29)

where ×n denotes the mode-n Hadamard product.

Unsurprisingly, larger tensor ranks improve PSNR at the
cost of slower training, especially since hash-based methods
are already computationally intensive.

G.2. Quantitative Results
In the main paper, we have provided the results for drums
and Lego models in the NeRF synthetic dataset. Here, we
provide PSNR values for all the remaining models in the
dataset, namely chair, ficus, hotdog, ship, material, and mic.

Backend Mode Rank chair ficus materials ship hotdog mic

ReLU+HE CP 16 32.45 31.56 32.18 30.82 35.57 36.79
ReLU+HE TT 16 35.34 34.10 32.40 31.68 37.90 37.50

Table 4. Quantitative Results for F-INR with ReLU + HE backend
for additional synthetic NeRF datasets.

G.3. Qualitative Results
Here, we provide additional visualizations for all the models
present in the NeRF synthetic dataset for the best perform-
ing F-INR (ReLU + HE - TT - Rank 16). The visualizations
are provided in Figure 25. For the hotdog model, we also
show how the learning is taking place over iterations in F-
INR. At the start (a few hundred rays), the images rendered
are not crisp but still capture the global shapes. More details
(mustard on a hot dog, for example) are crisply rendered as
the learning increases. We plot every 1000 iterations.

23

Figure 25. Novel Views generated for all models in Nerf Synthetic dataset [29] using F-INR ReLU + HE -TT- Rank 16.

24

Figure 26. Evolution of rendering test images shown for the Hotdog model, for every 1000 iterations.

25

H. Navier-Stokes PDE Super Resolution
Super-resolution setup is: We have sparse, discrete obser-
vations, and we train an INR with these sparse observations
and physics-informed loss [36] to get a continuous, differ-
entiable simulation encoded in the neural network model.
As the main paper discusses, this has similarities and differ-
ences from simulating the complete system using PINNs.
We also performed experiments on models specifically de-
veloped for super-resolution of simulations, most notably
PhySR [37] and MeshFreeFlowNet [18], and did not in-
clude them because they do not come under the family of
INRs. There is no F-INR- equivalent of such methods.
We include them for completeness, and we observe that for
most backends, F-INR shows competitive performance.

H.1. Architecture
The training strategy is similar to that of [8]. The input for
each network is the coordinates of respective dimensions,
and the output is a velocity vector in the x and y direc-
tions. The Navier-Stokes equation is in its vorticity form,
so this velocity is converted into vorticity, which is used to
enforce the PDE term and compressibility constraint. The
sparse observations are given as a term along with the ini-
tial condition. The weights used for physics loss term, ini-
tial, and sparse observation loss terms are 1, 103, and 104,
respectively. We uniformly sample 100 points per dimen-
sion as collocation points to enforce the PDE loss. We
use WIRE and SIREN backends and ReLU+PE010 and
ReLU+PE020 for all three modes. Each neural network
for F-INR is three layers of 256 neurons each. For the
baseline implementations, we use six layers of 256 neu-
rons each. MeshFreeFlowNet [18] and PhySR [37] are im-
plemented as the authors prescribe. Since they involve 3D
operations, a F-INR equivalent is not as straightforward as
other backends and, hence, is out of the scope of this cur-
rent work. The sparse data used for training is of shape
10×64×64, uniformly sampled from the original resolution
dataset 101×128×128. Thereby inducing a 40x sparsity.
Each model trains for 50k Adam iterations, with resam-
pling of collocation points for every 1000 iterations. We
test the models by predicting the simulation at full resolu-
tion, thereby doing the super-resolution. We quantify the
MSE error between the ground truth and the prediction.

H.2. Results
The results are given in Figure 27 and Table 5. We see
that F-INR achieves better results than the baseline, starting
from a Rank as low as 32. This highlights the effectiveness
of these models in terms of speed and efficiency. A visual-
ization of the prediction of F-INR with Mode Tucker, Rank
32, and WIRE backend is provided in Figure 29. In the
accompanying zip folder, we provide a video of the Navier-
Stokes results over all time steps.

Backend Mode Rank L 2 Error Time (hh:mm)

ReLU0 - - 0.426 ± 0.104 20:23
ReLU20 - - 0.773 ± 0.211 20:48
ReLU10 - - 0.097 ± 0.009 20:30
WIRE - - 0.073 ± 0.004 20:25
SIREN - - 0.184 ± 0.010 20:24
ModifiedPINN [50] - - 0.074 ± 0.008 28:40
CausalPINN [51] - - 0.070 ± 0.011 33:12
MFF Net [18] - - 0.048 ± 0.003 35:18
PhySR [37] - - 0.038 ± 0.020 27:05

CP 16 0.320 ± 0.029 0:35
CP 32 0.185 ± 0.021 0:37
CP 64 0.088 ± 0.018 0:49
CP 128 0.046 ± 0.007 1:08
CP 256 0.043 ± 0.007 1:42
TT 16 0.207 ± 0.068 0:35
TT 32 0.079 ± 0.015 0:39

WIRE TT 64 0.034 ± 0.004 0:59
TT 128 0.035 ± 0.002 1:44
TT 256 0.032 ± 0.002 1:56
Tucker 16 0.215 ± 0.051 0:35
Tucker 32 0.070 ± 0.023 0:37
Tucker 64 0.061 ± 0.019 0:49
Tucker 128 0.036 ± 0.003 1:08
Tucker 256 0.034 ± 0.004 2:03

CP 16 0.342 ± 0.053 0:35
CP 32 0.193 ± 0.077 0:37
CP 64 0.078 ± 0.008 0:48
CP 128 0.044 ± 0.005 1:07
CP 256 0.040 ± 0.010 1:52
TT 16 0.521 ± 0.070 0:32
TT 32 0.164 ± 0.074 0:36

SIREN TT 64 0.038 ± 0.008 0:53
TT 128 0.048 ± 0.005 1:31
TT 256 0.045 ± 0.003 1:58
Tucker 16 0.652 ± 0.087 0:31
Tucker 32 0.238 ±0.071 0:35
Tucker 64 0.113 ±0.058 0:52
Tucker 128 0.828 ±0.161 1:36
Tucker 256 0.635 ±0.089 2:00

CP 16 0.473 ±0.037 0:34
CP 32 0.379 ± 0.049 0:37
CP 64 0.320 ± 0.078 0:48
CP 128 0.314 ± 0.078 1:07
TT 16 0.396 ± 0.065 0:32
TT 32 0.345 ± 0.075 0:35
TT 64 0.286 ± 0.061 0:52

ReLU0 TT 128 0.327 ± 0.078 1:30
Tucker 16 0.422 ± 0.059 0:30
Tucker 32 0.408 ± 0.032 0:34
Tucker 64 0.324 ± 0.086 0:51
Tucker 128 0.325 ± 0.078 1:34

CP 16 0.344 ± 0.012 0:32
CP 32 0.199 ± 0.009 0:35
CP 64 0.112 ± 0.008 0:47
CP 128 0.050 ± 0.015 1:05
CP 256 0.044 ± 0.010 1:55
TT 16 0.247 ± 0.049 0:30
TT 32 0.084 ± 0.015 0:33
TT 64 0.032 ± 0.001 0:51

ReLU10 TT 128 0.030 ± 0.002 1:24
TT 256 0.030 ± 0.002 1:59
Tucker 16 0.264 ± 0.045 0:29
Tucker 32 0.073 ± 0.009 0:32
Tucker 64 0.038 ± 0.005 0:49
Tucker 128 0.032 ± 0.004 1:34
Tucker 256 0.032 ± 0.005 2:03

CP 16 0.778 ± 0.337 0:36
CP 32 0.852 ± 0.273 0:38
CP 64 0.817 ± 0.338 0:50
CP 128 0.776 ± 0.085 1:10
CP 256 0.079 ± 0.025 2:27
TT 16 0.689 ± 0.205 0:35
TT 32 0.744 ± 0.276 0:39

ReLU20 TT 64 0.810 ± 0.134 0:58
TT 128 0.881 ± 0.178 1:42
TT 256 0.772 ± 0.349 2:30
Tucker 16 0.845 ± 0.358 0:34
Tucker 32 0.912 ± 0.418 0:37
Tucker 64 0.773 ± 0.137 0:54
Tucker 128 0.766 ± 0.062 1:38
Tucker 256 0.789 ± 0.084 2:39

Table 5. Comparison of L2 Errors for F-INR s and baseline imple-
mentations for super-resolution of decaying vorticity simulation
using Navier Stokes equation. We tabulate all the combinations of
ranks, modes, and backends. F-INR s consistently outperforms,
having lesser L2 error and convergence time than baseline imple-
mentations.

26

H.3. Sparsity Ablation
Here, we tested the performance of the F-INR s for differ-
ent sparsity levels. We use the same setup and combination
of models and train them using three varying levels of spar-
sity: 160x, 40x, and 10x. We show that even for a sparsity
level 160x, F-INR s gives a competitive performance. We
also observe that more data corresponds to a better solution
overall. The results are given in Figure 28. We see that for
all the backends, sparsities, and ranks, TT mode stands out
as best performing, followed by Tucker mode and CP mode,
respectively.

1 10 20 30 40
0.0

0.2

0.4

0.6

0.8

L2
Er

ro
r

Rank 16

1 10 20 30 40

Rank 32

1 10 20 30 40
Speedup [x]

0.0

0.2

0.4

0.6

0.8

L2
Er

ro
r

Rank 64

1 10 20 30 40
Speedup [x]

Rank 128

1 10 20 30 40
Speedup [x]

0.0

0.2

0.4

0.6

0.8

L2
Er

ro
r

Rank 256

Wire0
Siren0
Relu0

Relu10
Relu20
Causalpinn

Worse Than Baseline
Better Than Baseline
Mode CP (*)

Mode TT (+)
Mode Tucker (x)
Baseline (No Decomposition)

Figure 27. L 2 Error vs. Speedup plots for Super-Resolution of
simulation task. This is a visualization of Table 5. This demon-
strates that the proposed method consistently outperforms base-
line methods in terms of speed and solution quality. Notably, the
ReLU20 backend exhibits poor performance, whereas the ReLU10
backend achieves superior results, surpassing baseline methods.
This highlights the sensitivity of the positional encoding parame-
ter σ. Our results show that the TT mode consistently yields better
results across all modes, underscoring its effectiveness in this con-
text.

27

Rank
10−2

10−1

100

L
2

E
rr

or

WIRE

Rank
10−2

10−1

100

L
2

E
rr

or

ReLU10

Rank
10−2

10−1

100

L
2

E
rr

or

ReLU0

16 32 64 128

Rank

10−2

10−1

100

L
2

E
rr

or

ReLU20

16 32 64 128

Rank

10−2

10−1

100

L
2

E
rr

or

SIREN

TT

CP

Tucker

Sparsity 160x

Sparsity 40x

Sparsity 10x

Figure 28. L 2 Errors for varying sparsity levels for super-resolution using F-INRs. Three levels of sparsity are tested for all the modes
and backends. We observe that ReLU20 performs badly, and mode TT performs the best. Less sparsity leads to a better solution because
more data is available. Nevertheless, F-INR s achieves competitive results even for higher sparsities.

28

Figure 29. Visualization of vorticity for the super-resolution tasks
using F-INR: Mode Tucker with Rank 32 and WIRE backend.
We achieve a good prediction closer to the ground truth with a
smaller rank of 32, highlighting the effectiveness of F-INR.

Figure 30. Visualization of vorticity for the super-resolution tasks
using F-INR: Mode TT with Rank 64 and ReLU10 backend.
We achieve good prediction closer to ground truth with a rank
of 64; this solution surpasses the baseline implementations, high-
lighting the effectiveness of F-INR.

29

I. Failure Modes at Low Rank
Our main experiments focused on rank ranges that yield
high-fidelity reconstructions. However, the tensor rank di-
rectly controls the model’s capacity. Below a certain thresh-
old, the parameter count becomes insufficient to capture the
complexity of the target signal, inevitably leading to recon-
struction failure or strong artifacts. For this ablation study,
we deliberately probe this lower bound by evaluating ex-
tremely low ranks (e.g., 2, 4) to analyze the resulting failure
modes and understand how different backbones degrade un-
der severe capacity constraints.

What Rank Controls. In F-INR, the rank r of the ten-
sor decomposition controls the capacity to model cross-
dimensional interactions. With CP/TT/Tucker, the predic-
tor is a sum (or chain) of separable factors. If the target
function has an effective, yet unknown, tensor rank R⋆

(with respect to the chosen mode), any choice r < R⋆

forces a structural approximation error that optimization
cannot remove. However, still a minimal error is aimed for.

Discrete View (Intuition) [20]. Let us consider the ten-
sor X ∈ Rn1×···×nd formed by evaluating the signal on
a grid. The best rank-(r1, . . . , rd) Tucker approximation
X(r1,...,rd) satisfies the classical tail-energy bound

∥X −X(r1,...,rd)∥2F ≤
d∑

k=1

∑
i>rk

(
σ
(k)
i

)2
, (30)

where σ(k)
i are the singular values of the mode-k un-

folding of X . Thus, picking rk below the intrinsic rank of
mode k leaves a residual that cannot be fit away by training
the model, simply lacks the degrees of freedom to couple
modes. This is a very active area of research, to find the
optimum rank of a tensor decomposition, and we suggest
these works for further reading [19, 20, 28].

Empirical Signatures of Under-ranked Models.
Across tasks, we consistently observe:
• Images. For the extreme low cases no suitable recon-

struction could be reached, as clearly visible in Figure 31.
Over-smoothing and loss of high-frequency details; edges
appear “soft” and textures collapse into axis-aligned pat-
terns. Artifacts from the backend, such as hash encoding,
also show up.

• NeRF (e.g., Lego). With very low ranks r ∈ {1, 2, 4},
geometry is under-reconstructed (with artifacts from hash
encoding), view-dependent effects degenerate to diffuse
color, and PSNR saturates well below monolithic base-
lines, as seen in Figs. 32 and 33.
Why Optimization Cannot Fix it. For TT, the small-

est internal rank is a hard bottleneck: it is the upper lower
bound the information that can flow across any bipartition
of dimensions. For Tucker, small factor ranks cap the di-
mension of each per-mode subspace, and the core cannot

create interactions not spanned by those subspaces. Con-
sequently, gradient-based optimization can reduce noise
within the chosen subspaces but cannot synthesize missing
cross-mode structure.

Insights for Rank Selection. We would treat r as the
primary capacity control for interactions between the de-
composition components. Very low ranks predictably un-
derfit, as seen in Fig. 31. We would start from a modest
r = 8 and increase only if (i) loss plateaus without over-
fitting signals and (ii) qualitative artifacts match the under-
ranked signatures. Large ranks (r = 256) rarely help be-
yond small, diminishing improvements and can introduce
optimization instability (e.g., poorly conditioned Tucker
cores). As we have seen in Fig. 9 (denoising ablations),
large ranks also enable that noise patterns are learned within
the components.

(a) r = 2 (b) r = 4

(c) r = 6 (d) r = 8

(e) r = 32 (f) r = 64

(g) r = 128 (h) r = 316

Figure 31. Low Rank Ablations - Images. Performance of
F-INR (ReLU + Hash) on Image task for increasing rank r =
[2, 4, 8, 16, 32, 64, 128, 315] without changing any other hyperpa-
rameter. Extremely low ranks cannot reconstruct the image, lead-
ing to artifacts and smoothening. As the rank increases, the fidelity
of the image increases.

30

(a) r = 1

(b) r = 2

(c) r = 4

Figure 32. Low Rank Ablations CP - NeRF Lego. Performance on NeRF task for low ranks of 1, 2, and 4. For extremely low ranks, we
see artifacts and the inability of the F-INR to learn fine features, though the backend neural network is unchanged.

(a) r = 1

(b) r = 2

(c) r = 4

Figure 33. Low Rank Ablations TT - NeRF Lego. Performance on NeRF task for low ranks of 1, 2, and 4, respectively. However, these
visual performance is better than their CP counterparts, owing to the larger capacity of TT.

31

J. Practitioner Guide: Backend, Mode, Rank
This section synthesizes our experimental findings into
practical recommendations for applying the F-INR frame-
work. We provide task-specific guidance on selecting the
optimal combination of (i) INR backend (e.g., SIREN,
WIRE, ReLU+PE), (ii) decomposition mode (CP, TT,
Tucker), and (iii) tensor rank. These guidelines are derived
from our evaluations across diverse applications, including
image and video representation, SDF reconstruction, NeRF,
and physics-informed super-resolution. Our aim is to pro-
vide a clear, empirically-grounded starting point for prac-
titioners and future research leveraging our functional de-
composition paradigm.

J.1. Investigating Task Constraints
Do you need gradients w.r.t. input (e.g., Eikonal/PDE
terms)? Use a smooth, fully differentiable backend
(ReLU+PE, WIRE, or SIREN). Avoid hash encodings,
which are piecewise non-smooth and incompatible with
Eikonal-style regularizers.
Is your INR dense/grid-like or sparse/unstructured?
Both work with F-INR, but sparse ray sampling (NeRF)
benefits from encoders with strong locality (Hash) when
gradients w.r.t. input are not required. When dealing with
grid structures, utilizing the outer products will help in re-
ducing the forward pass complexity.

J.2. Backends: Recommend Task Defaults
• PDE/SDF (Input-gradients Required): ReLU+PE or

WIRE. In our SDF benchmark, WIRE+PE with TT gave
the lowest MSE/highest IoU; hash was excluded by de-
sign. For Navier-Stokes, ReLU+PE and WIRE with
TT/Tucker dominated across ranks.

• NeRF (No Input-gradient Regularization):
ReLU+Hash, with TT mode. TT at r = 16 outper-
formed CP/Tucker on Lego/Drums and stayed strong
across the remaining scenes.

• Images/Video: All backends benefit from factoriza-
tion. For single images, CP at moderate-to-high
ranks achieved large PSNR gains and speedups across
SIREN/WIRE/ReLU+PE; for videos, TT tended to win,
while WIRE under default hyperparameters performed
slightly worse.

J.3. Modes: Recommendations
• TT is a robust first choice when cross-axis couplings mat-

ter (PDEs, NeRF, video). It consistently achieved the best
or tied-best metrics, and remained stable as r grew.

• Tucker is competitive on PDE/SDF and sometimes
within a few accuracy/metric points of TT. Use when you
want per-mode rank control and a compact core.

• CP is sufficient for 2D images at modest cost, but shows
slight performance degradations for PDEs at low rank.

J.4. Rank: Capacity Knob for Interactions
Starting Points. Use the smallest rank that does not:
• Images: r ∈ [64, 256] (CP/TT)
• NeRF: r = 16 (TT)
• PDE/SDF: r ∈ [64, 256] (TT/Tucker)

In SDF (Armadillo and others), WIRE+PE with TT
at r=128 set the best MSE/IoU. In Navier-Stokes, er-
ror decreased monotonically up to r ∈ [128, 256] across
TT/Tucker, with large speedups vs. monolithic baselines.
In NeRF, TT r=16 with ReLU+Hash was the best among
modes at comparable budgets.

Increasing the Rank. Increase r if: (i) validation
loss (or physics residual) plateaus over several epochs,
(ii) edges/textures (images/NeRF) or gradient constraints
(SDF/PDE) remain underfit, and (iii) larger r gives dimin-
ishing returns. The rank-error trends and plateau behavior
are visible in the ablation sections.

J.5. Decide Mode & Rank
1. Choose backend by constraint: if gradients are needed,

use ReLU+PE or WIRE; else prefer ReLU+Hash for
3D/5D fields.

2. Run short probes (1-2k steps) at a small rank
r0: TT, Tucker, CP. Pick the mode with the largest
∆loss-per-minute. Our ablations consistently rank
TT≥Tucker≫CP for Navier-Stokes; TT¿CP/Tucker for
NeRF; CP is strong for 2D images at comparable cost.

3. Grow r cautiously: double r only when the probe stalls;
stop when ∆metric is <1–2% over a full probe window.
(Our tables show clear diminishing returns beyond r ∈
[128, 256] for PDE; NeRF often saturates by r=16.)

J.6. PE/Encoder sensitivity (Practical Note)
For PE/encoder frequencies, overly aggressive settings can
hurt PDE stability; in Navier-Stokes, ReLU+PE with a
higher frequency performed worse (ReLU20), whereas a
milder setting (ReLU10) achieved substantially lower error.
Use conservative PE at first, then tune up only if needed
[29, 41]. For WIRE, we adopt the default ω=30, s=30 used
throughout unless stated otherwise [39].

J.7. Ready-To-Use Defaults
These defaults match the best or near-best settings in our
tables while keeping training time modest.

Task Backend Mode Rank r

2D Image (Grid) SIREN or WIRE (+PE) CP or TT 128-256
SDF (Eikonal PDE) WIRE or ReLU+PE (no Hash) TT (≈ Tucker) 128 (64-256)
NeRF (Synthetic) ReLU+Hash TT 16 (8-32)
Video (Per-frame Grid) ReLU+PE / ReLU+Hash TT 128-256
Navier-Stokes SR ReLU+PE or WIRE (no Hash) TT (≥ Tucker ≫ CP) 128-256

32

References
[1] Eirikur Agustsson and Radu Timofte. Ntire 2017 challenge

on single image super-resolution: Dataset and study. In The
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR) Workshops, 2017. 9, 10

[2] Yash Bhalgat. Hashnerf-pytorch. https://github.
com/yashbhalgat/HashNeRF-pytorch/, 2022. 7

[3] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James
Johnson, Chris Leary, Dougal Maclaurin, George Necula,
Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne,
and Qiao Zhang. JAX: composable transformations of
Python+NumPy programs, 2018. 1, 6

[4] Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and Hao
Su. Tensorf: Tensorial radiance fields. In European confer-
ence on computer vision, pages 333–350. Springer, 2022. 5,
23

[5] Anpei Chen, Zexiang Xu, Xinyue Wei, Siyu Tang, Hao Su,
and Andreas Geiger. Factor fields: A unified framework for
neural fields and beyond. arXiv preprint arXiv:2302.01226,
2023. 4, 7, 15, 21, 22

[6] Hao Chen, Bo He, Hanyu Wang, Yixuan Ren, Ser Nam Lim,
and Abhinav Shrivastava. Nerv: Neural representations for
videos. In Advances in Neural Information Processing Sys-
tems, pages 21557–21568. Curran Associates, Inc., 2021. 12

[7] Zhang Chen, Zhong Li, Liangchen Song, Lele Chen, Jingyi
Yu, Junsong Yuan, and Yi Xu. Neurbf: A neural fields repre-
sentation with adaptive radial basis functions. In Proceedings
of the IEEE/CVF International Conference on Computer Vi-
sion, pages 4182–4194, 2023. 6

[8] Junwoo Cho, Seungtae Nam, Hyunmo Yang, Seok-Bae Yun,
Youngjoon Hong, and Eunbyung Park. Separable physics-
informed neural networks. Advances in Neural Information
Processing Systems, 2023. 8, 26

[9] Brian Curless and Marc Levoy. A volumetric method for
building complex models from range images. In Proceedings
of the 23rd Annual Conference on Computer Graphics and
Interactive Techniques, pages 303–312. ACM, 1996. 15, 21,
22

[10] G. Cybenko. Approximation by superpositions of a sig-
moidal function. Mathematics of Control, Signals and Sys-
tems, 2(4):303–314, 1989. 8

[11] Emilien Dupont, Hrushikesh Loya, Milad Alizadeh, Adam
Goli’nski, Yee Whye Teh, and A. Doucet. Coin++: Neu-
ral compression across modalities. Trans. Mach. Learn. Res.,
2022, 2022. 12

[12] Andrew Gardner, Chris Tchou, Tim Hawkins, and Paul De-
bevec. Linear light source reflectometry. In ACM SIGGRAPH
2003 Papers, pages 749–758, New York, NY, USA, 2003. As-
sociation for Computing Machinery. 15, 21

[13] Amos Gropp, Lior Yariv, Niv Haim, Matan Atzmon, and
Yaron Lipman. Implicit geometric regularization for learning
shapes. In Proceedings of the 37th International Conference
on Machine Learning. JMLR.org, 2020. 15, 21

[14] Indupama Herath. Multivariate Regression using Neural
Networks and Sums of Separable Functions. PhD thesis, Ohio
University, 2022. 8

[15] Frank L. Hitchcock. The expression of a tensor or a polyadic
as a sum of products. Journal of Mathematics and Physics, 6
(1-4):164–189, 1927. 3

[16] Kurt Hornik, Maxwell Stinchcombe, and Halbert White.
Multilayer feedforward networks are universal approximators.
Neural Networks, 2(5):359–366, 1989. 8

[17] Xinquan Huang and Tariq Alkhalifah. Efficient physics-
informed neural networks using hash encoding. Journal of
Computational Physics, 501:112760, 2024. 6, 10

[18] Chiyu ”Max” Jiang, Soheil Esmaeilzadeh, Kamyar Aziz-
zadenesheli, Karthik Kashinath, Mustafa Mustafa, Hamdi A.
Tchelepi, Philip Marcus, Prabhat, and Anima Anandku-
mar. Meshfreeflownet: a physics-constrained deep continuous
space-time super-resolution framework. In Proceedings of the
International Conference for High Performance Computing,
Networking, Storage and Analysis. IEEE Press, 2020. 26

[19] Tamara G. Kolda and Brett W. Bader. Tensor decompositions
and applications. SIAM Review, 51(3):455–500, 2009. 3, 30

[20] Tamara G. Kolda and David Hong. Stochastic gradients for
large-scale tensor decomposition. SIAM Journal on Mathe-
matics of Data Science, 2(4):1066–1095, 2020. 30

[21] Venkat Krishnamurthy and Marc Levoy. Fitting smooth sur-
faces to dense polygon meshes. In Proceedings of the 23rd An-
nual Conference on Computer Graphics and Interactive Tech-
niques, pages 313–324, New York, NY, USA, 1996. Associa-
tion for Computing Machinery. 15, 21

[22] Ruofan Liang, Hongyi Sun, and Nandita Vijaykumar. Co-
ordx: Accelerating implicit neural representation with a split
mlp architecture. ArXiv, abs/2201.12425, 2022. 6

[23] Zhen Liu, Hao Zhu, Qi Zhang, Jingde Fu, Weibing Deng,
Zhan Ma, Yanwen Guo, and Xun Cao. Finer: Flexi-
ble spectral-bias tuning in implicit neural representation by
variable-periodic activation functions. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 2713–2722, 2024. 4, 5

[24] William E. Lorensen and Harvey E. Cline. Marching cubes:
A high resolution 3d surface construction algorithm. In Pro-
ceedings of the 14th Annual Conference on Computer Graph-
ics and Interactive Techniques, page 163–169, New York, NY,
USA, 1987. Association for Computing Machinery. 15

[25] Yisi Luo, Xile Zhao, Zhemin Li, Michael K Ng, and Deyu
Meng. Low-rank tensor function representation for multi-
dimensional data recovery. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2023. 3

[26] Siwei Ma, Xinfeng Zhang, Chuanmin Jia, Zhenghui Zhao,
Shiqi Wang, and Shanshe Wang. Image and video compres-
sion with neural networks: A review. IEEE Transactions on
Circuits and Systems for Video Technology, 30(6):1683–1698,
2020. 12

[27] Warren S. McCulloch and Walter Pitts. A logical calculus of
the ideas immanent in nervous activity. The bulletin of math-
ematical biophysics, 5(4):115–133, 1943. 13

[28] M. Messiter and Y. Shamash. Product and sum separable
functions. IEEE Transactions on Automatic Control, 30(7):
694–697, 1985. 30

[29] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:

33

https://github.com/yashbhalgat/HashNeRF-pytorch/
https://github.com/yashbhalgat/HashNeRF-pytorch/

Representing scenes as neural radiance fields for view synthe-
sis. In ECCV, 2020. 1, 4, 5, 9, 13, 24, 32

[30] Thomas Müller. tiny-cuda-nn, 2021. 6
[31] Thomas Müller, Alex Evans, Christoph Schied, and Alexan-

der Keller. Instant neural graphics primitives with a multires-
olution hash encoding. ACM Trans. Graph., 41(4):102:1–
102:15, 2022. 5, 6, 7, 9, 10, 13, 23

[32] I. V. Oseledets. Tensor-train decomposition. SIAM Journal
on Scientific Computing, 33(5):2295–2317, 2011. 3, 15

[33] Jeong Joon Park, Peter Florence, Julian Straub, Richard
Newcombe, and Steven Lovegrove. DeepSDF: Learning Con-
tinuous Signed Distance Functions for Shape Representation.
In 2019 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 165–174, Long Beach, CA,
USA, 2019. IEEE. 15, 21

[34] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,
Andreas Köpf, Edward Yang, Zach DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu
Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imper-
ative style, high-performance deep learning library, 2019. 1,
6

[35] M.D. Raisinghania. Ordinary and Partial Differential Equa-
tions. S. Chand Publishing, 1991. 8

[36] M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics-
informed neural networks: A deep learning framework for
solving forward and inverse problems involving nonlinear par-
tial differential equations. Journal of Computational Physics,
378:686–707, 2019. 26

[37] Pu Ren, Chengping Rao, Yang Liu, Zihan Ma, Qi Wang,
Jian-Xun Wang, and Hao Sun. Physr: Physics-informed deep
super-resolution for spatiotemporal data. Journal of Compu-
tational Physics, 492:112438, 2023. 26

[38] W. Rudin. Principles of Mathematical Analysis. McGraw-
Hill, 1964. 8

[39] Vishwanath Saragadam, Daniel LeJeune, Jasper Tan, Guha
Balakrishnan, Ashok Veeraraghavan, and Richard G Bara-
niuk. Wire: Wavelet implicit neural representations. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 18507–18516, 2023. 1, 4, 5,
9, 10, 11, 13, 32

[40] Vincent Sitzmann, Julien N.P. Martel, Alexander W.
Bergman, David B. Lindell, and Gordon Wetzstein. Implicit
neural representations with periodic activation functions. In
Proc. NeurIPS, 2020. 1, 4, 5, 13

[41] Matthew Tancik, Pratul P. Srinivasan, Ben Mildenhall, Sara
Fridovich-Keil, Nithin Raghavan, Utkarsh Singhal, Ravi Ra-
mamoorthi, Jonathan T. Barron, and Ren Ng. Fourier fea-
tures let networks learn high frequency functions in low di-
mensional domains. NeurIPS, 2020. 4, 10, 32

[42] Jiaxiang Tang. Torch-ngp: a pytorch implementation of
instant-ngp, 2022. https://github.com/ashawkey/torch-ngp. 7

[43] Jiaxiang Tang, Xiaokang Chen, Jingbo Wang, and Gang
Zeng. Compressible-composable nerf via rank-residual de-
composition. arXiv preprint arXiv:2205.14870, 2022. 7

[44] Vijay Thakkar, Pradeep Ramani, Cris Cecka, Aniket Shivam,
Honghao Lu, Ethan Yan, Jack Kosaian, Mark Hoemmen,
Haicheng Wu, Andrew Kerr, Matt Nicely, Duane Merrill,
Dustyn Blasig, Fengqi Qiao, Piotr Majcher, Paul Springer,
Markus Hohnerbach, Jin Wang, and Manish Gupta. CUT-
LASS, 2023. 7

[45] Ledyard R. Tucker. Some mathematical notes on three-mode
factor analysis. Psychometrika, 31(3):279–311, 1966. 4

[46] Greg Turk and Marc Levoy. Zippered polygon meshes from
range images. In Proceedings of the 21th Annual Confer-
ence on Computer Graphics and Interactive Techniques, SIG-
GRAPH 1994, Orlando, FL, USA, July 24-29, 1994, pages
311–318. ACM, 1994. 15, 21

[47] Sai Karthikeya Vemuri, Tim Büchner, Julia Niebling, and
Joachim Denzler. Functional tensor decompositions for
physics-informed neural networks, 2024. 8

[48] Maolin Wang, Yu Pan, Zenglin Xu, Xiangli Yang, Guangxi
Li, and Andrzej Cichocki. Tensor networks meet neu-
ral networks: A survey and future perspectives. CoRR,
abs/2302.09019, 2023. 3

[49] Peng-Shuai Wang, Yang Liu, and Xin Tong. Dual octree
graph networks for learning adaptive volumetric shape repre-
sentations. ACM Transactions on Graphics (SIGGRAPH), 41
(4), 2022. 15

[50] Sifan Wang, Xinling Yu, and Paris Perdikaris. When and
why pinns fail to train: A neural tangent kernel perspective.
Journal of Computational Physics, 449:110768, 2022. 26

[51] Sifan Wang, Shyam Sankaran, and Paris Perdikaris. Respect-
ing causality for training physics-informed neural networks.
Computer Methods in Applied Mechanics and Engineering,
421:116813, 2024. 26

[52] Alex Yu, Sara Fridovich-Keil, Matthew Tancik, Qinhong
Chen, Benjamin Recht, and Angjoo Kanazawa. Plenox-
els: Radiance fields without neural networks. arXiv preprint
arXiv:2112.05131, 2(3):6, 2021. 23

[53] Qibin Zhao, Guoxu Zhou, Shengli Xie, Liqing Zhang, and
Andrzej Cichocki. Tensor ring decomposition. arXiv preprint
arXiv:1606.05535, 2016. 3

[54] Yufeng Zheng, Victoria Fernández Abrevaya, Marcel C.
Bühler, Xu Chen, Michael J. Black, and Otmar Hilliges. I
M Avatar: Implicit morphable head avatars from videos. In
Computer Vision and Pattern Recognition (CVPR), 2022. 12,
13

[55] Hao Zhu, Zhen Liu, Qi Zhang, Jingde Fu, Weibing Deng,
Zhan Ma, Yanwen Guo, and Xun Cao. Finer++: Build-
ing a family of variable-periodic functions for activating im-
plicit neural representation. arXiv preprint arXiv:2407.19434,
2024. 4, 5

34

	Introduction
	Tensor Decomposition Modes and Backends
	Tensor Decomposition Modes
	Canonical Polyadic (CP)
	Tensor Train (TT)
	Tucker (TU)

	Backends
	ReLU MLP with Positional Encoding
	Tanh MLP
	SIREN
	FINER
	WIRE
	Factor Fields
	Hash Encoding as Embedding

	Model Implementations in tiny-cuda-nn
	Notes on SOTA Methods
	CoordX
	NeuRBF
	Factor Fields
	InstantNGP

	Universal Approximation Theorem for Separable Neural Functions
	Image Representation Details
	MLP Architectrue
	Quantitative Results
	Qualitative Results
	Ablations: Single Image Super Resolution and Denoising

	Video Representation Extension
	Model Architectures
	Results

	Geometry Learning via Signed Distance Functions
	Architecture and Training
	Ablations
	Qualiative Results

	Neural Radiance Fields
	Architecture
	Quantitative Results
	Qualitative Results

	Navier-Stokes PDE Super Resolution
	Architecture
	Results
	Sparsity Ablation

	Failure Modes at Low Rank
	Practitioner Guide: Backend, Mode, Rank
	Investigating Task Constraints
	Backends: Recommend Task Defaults
	Modes: Recommendations
	Rank: Capacity Knob for Interactions
	Decide Mode & Rank
	PE/Encoder sensitivity (Practical Note)
	Ready-To-Use Defaults

